191 research outputs found

    A Multi-Epoch HST Study of the Herbig-Haro Flow from XZ Tauri

    Full text link
    We present nine epochs of Hubble Space Telescope optical imaging of the bipolar outflow from the pre-main sequence binary XZ Tauri. Our data monitors the system from 1995-2005 and includes emission line images of the flow. The northern lobe appears to be a succession of bubbles, the outermost of which expanded ballistically from 1995-1999 but in 2000 began to deform and decelerate along its forward edge. It reached an extent of 6" from the binary in 2005. A larger and fainter southern counterbubble was detected for the first time in deep ACS images from 2004. Traces of shocked emission are seen as far as 20" south of the binary. The bubble emission nebulosity has a low excitation overall, as traced by the [S II]/H-alpha line ratio, requiring a nearly comoving surrounding medium that has been accelerated by previous ejections or stellar winds. Within the broad bubbles there are compact emission knots whose alignments and proper motions indicate that collimated jets are ejected from each binary component. The jet from the southern component, XZ Tau A, is aligned with the outflow axis of the bubbles and has tangential knot velocities of 70-200 km/s. Knots in the northern flow are seen to slow and brighten as they approach the forward edge of the outermost bubble. The knots in the jet from the other star, XZ Tau B, have lower velocities of ~100 km/s

    Hubble Space Telescope Observations of the HD 202628 Debris Disk

    Get PDF
    A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219)

    Assessing the performance limits of internal coronagraphs through end-to-end modeling: a NASA TDEM study

    Get PDF
    As part of the NASA ROSES Technology Development for Exoplanet Missions (TDEM) program, we are conducting a study of three internal coronagraphs (PIAA, vector vortex, hybrid bandlimited) to understand their behaviors in realistically-aberrated systems with wavefront control (deformable mirrors). This study consists of two milestones: (1) develop wavefront propagation codes appropriate for each coronagraph that are accurate to 1% or better (compared to a reference algorithm) but are also time and memory efficient, and (2) use these codes to determine the wavefront control limits of each architecture. We discuss the results from the study so far, with emphasis on representing the PIAA coronagraph and its wavefront control behavior

    Hubble Space Telescope Imaging of the Circumstellar Nebulosity of T Tauri

    Get PDF
    Short-exposure Planetary Camera images of T Tauri have been obtained using broadband filters spanning the wavelength range 0.55-0.80 μm. The optically visible star lies very close to an arc of reflection nebulosity. The arc's northern arm extends approximately 5" from the star, while its southwestern arm appears brighter and extends only 2". The arc shows an approximate symmetry along an axis toward the west-northwest, the direction of Hind's Nebula and the blueshifted molecular outflow. The morphology of the reflected light is similar to models of scattered light within an illuminated, axisymmetric outflow cavity in a circumbinary envelope, viewed ≈ 45° from the outflow axis. However, our model images do not successfully account for the amount of limb brightening that is seen. No optical counterpart to the infrared companion is seen to a limiting magnitude of V = 19.6, which suggests A_V > 7 mag toward this source. There is no evidence for an optical tertiary, to a limiting ΔV = 5.1 mag fainter than the primary, at the position where such an object has been previously reported

    HST and Spitzer Observations of the HD 207129 Debris Ring

    Get PDF
    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns (resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS (55-90 microns) spectrographs measured disk emission at >28 microns. In the HST image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and is inclined by 60 degrees from pole-on. At 70 microns it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 microns the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V=23.7 mag per square arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure

    Stellar Populations at the Center of IC 1613

    Full text link
    We have observed the center of the Local Group dwarf irregular galaxy IC 1613 with WFPC2 aboard the Hubble Space Telescope in the F439W, F555W, and F814W filters. We find a dominant old stellar population (aged ~7 Gyr), identifiable by the strong red giant branch (RGB) and red clump populations. From the (V-I) color of the RGB, we estimate a mean metallicity of the intermediate-age stellar population [Fe/H] = -1.38 +/- 0.31. We confirm a distance of 715 +/- 40 kpc using the I-magnitude of the RGB tip. The main-sequence luminosity function down to I ~25 provides evidence for a roughly constant SFR of approximately 0.00035 solar masses per year across the WFPC2 field of view (0.22 square kpc) during the past 250-350 Myr. Structure in the blue loop luminosity function implies that the SFR was ~50% higher 400-900 Myr ago than today. The mean heavy element abundance of these young stars is 1/10th solar. The best explanation for a red spur on the main-sequence at I = 24.7 is the blue horizontal branch component of a very old stellar population at the center of IC 1613. We have also imaged a broader area of IC 1613 using the 3.5-meter WIYN telescope under excellent seeing conditions. The AGB-star luminosity function is consistent with a period of continuous star formation over at least the age range 2-10 Gyr. We present an approximate age-metallicity relation for IC 1613, which appears similar to that of the Small Magellanic Cloud. We compare the Hess diagram of IC 1613 to similar data for three other Local Group dwarf galaxies, and find that it most closely resembles the nearby, transition-type dwarf galaxy Pegasus (DDO 216).Comment: To appear in the September 1999 Astronomical Journal. LaTeX, uses AASTeX v4.0, emulateapj style file, 19 pages, 12 postscript figures, 2 tables. 5 of the figures available separately via the WW

    End-to-end simulations of different coronagraphic techniques

    Get PDF
    The NASA exoplanet exploration program is dedicated to developing technologies for detecting and characterizing extrasolar planets. In support of that program we have evaluated three different coronagraphic techniques (bandlimited Lyot, optical vortex, and phase-induced pupil apodization) using optical propagation simulations. These utilized a complete hypothetical telescope+coronagraph system with phase and amplitude aberrations. Wavefront control using dual sequential deformable mirrors was performed. We discuss the different computational techniques necessary to accurately simulate each coronagraph

    Slotted Aircraft Wing

    Get PDF
    An aircraft wing includes a leading airfoil element and a trailing airfoil element. At least one slot is defined by the wing during at least one transonic condition of the wing. The slot may either extend spanwise along only a portion of the wingspan, or it may extend spanwise along the entire wingspan. In either case, the slot allows a portion of the air flowing along the lower surface of the leading airfoil element to split and flow over the upper surface of the trailing airfoil element so as to achieve a performance improvement in the transonic condition

    The HD 163296 Circumstellar Disk in Scattered Light: Evidence of Time-Variable Self-Shadowing

    Get PDF
    We present the first multicolor view of the scattered light disk of the Herbig Ae star HD 163296, based on coronagraphic observations from the Hubble Space Telescope Advanced Camera for Surveys (HST ACS). Radial profile fits of the surface brightness along the disk's semimajor axis indicate that the disk is not continuously flared, and extends to ~540 AU. The disk's color (V − I) = 1.1 at a radial distance of 3.5'' is redder than the observed stellar color (V − I) = 0.15. This red disk color might be indicative of either an evolution in the grain size distribution (i.e., grain growth) and/or composition, both of which would be consistent with the observed nonflared geometry of the outer disk. We also identify a single ansa morphological structure in our F435W ACS data, which is absent from earlier epoch F606W and F814W ACS data, but corresponds to one of the two ansae observed in archival HST Space Telescope Imaging Spectrograph (STIS) coronagraphic data. Following transformation to similar bandpasses, we find that the scattered light disk of HD 163296 is 1 mag arcsec^(−2) fainter at 3.5'' in the STIS data than in the ACS data. Moreover, variations are seen in (1) the visibility of the ansa(e) structures, (2) the relative surface brightness of the ansa(e) structures, and (3) the (known) intrinsic polarization of the system. These results indicate that the scattered light from the HD 163296 disk is variable. We speculate that the inner disk wall, which Sitko et al. suggests has a variable scale height as diagnosed by near-IR SED variability, induces variable self-shadowing of the outer disk. We further speculate that the observed surface brightness variability of the ansa(e) structures may indicate that the inner disk wall is azimuthally asymmetric
    • …
    corecore